HOG算法的笔记与python实现

本文最后更新于:2023年4月7日 上午

这两篇[1]【2】博客写的都非常详细。这里做个笔记记录一下。

HOG称为方向梯度直方图(Histogram of Oriented Gradient),主要是为了对图像进行特征提取。所以在传统目标检测算法中经常与SVM结合用于行人识别任务(当前都是基于深度学习来做了,毕竟效果不要太好了,并且省去了繁琐的特征检测过程)。

HOG主要是计算图像中每个像素的梯度值和梯度方向,从而来获得梯度特征,是一种特征描述子[1]

HOG特点

1.由于计算局部直方图和归一化,所以它对图像几何的和光学的形变都能保持很好的不变性;

2.细微的动作可以被忽略而不影响检测效果。

HOG计算步骤

1.对输入图像进行灰度化

2.利用gamma校正法对图像进行颜色空间归一化;(伽玛校正就是对图像的伽玛曲线进行编辑,以对图像进行非线性色调编辑的方法,检出图像信号中的深色部分和浅色部分,并使两者比例增大,从而提高图像对比度效果。主要是为了降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;)

3.计算图像中每个像素的梯度大小和方向;(主要是为了捕获轮廓信息,同时进一步弱化光照的干扰)

4.将图像划分cells,计算每个cell内的梯度直方图;

5.将每几个cell组成一个block,计算每个block内的梯度特征;

6.将每几个cell组成一个block(例如3*3个cell/block),一个block内所有cell的特征descriptor串联起来便得到该block的HOG特征描述子;

7.将图像image内的所有block的HOG特征描述子串联起来就可以得到该image(你要检测的目标)的HOG特征描述子了。这个就是最终的可供分类使用的特征向量了【2】

 

 算法实现
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#coding:utf-8
#手敲的hog算法,跑通了,效果还行
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt


class Hog_descriptor():
def __init__(self, img, cell_size=16, bin_size=8):
self.img = img
self.img = np.sqrt(img / np.max(img)) # 做完归一化取根号,取值范围[0,1]
self.img = img * 255
self.cell_size = cell_size
self.bin_size = bin_size
self.angle_unit = 360 / self.bin_size


def extract(self):
height, width = self.img.shape
# 计算图像的梯度大小和方向
gradient_magnitude, gradient_angle = self.global_gradient()
gradient_magnitude = abs(gradient_magnitude)
cell_gradient_vector = np.zeros((int(height / self.cell_size), int(width / self.cell_size), self.bin_size))
for i in range(cell_gradient_vector.shape[0]):
for j in range(cell_gradient_vector.shape[1]):
# cell内的梯度大小
cell_magnitude = gradient_magnitude[i * self.cell_size:(i + 1) * self.cell_size,
j * self.cell_size:(j + 1) * self.cell_size]
# cell内的梯度方向
cell_angle = gradient_angle[i * self.cell_size:(i + 1) * self.cell_size,
j * self.cell_size:(j + 1) * self.cell_size]
# 转化为梯度直方图格式
cell_gradient_vector[i][j] = self.cell_gradient(cell_magnitude, cell_angle)

# 绘制梯度直方图
hog_image = self.render_gradient(np.zeros([height, width]), cell_gradient_vector)

# block组合、归一化
hog_vector = []
for i in range(cell_gradient_vector.shape[0] - 1):
for j in range(cell_gradient_vector.shape[1] - 1):
block_vector = []
block_vector.extend(cell_gradient_vector[i][j])
block_vector.extend(cell_gradient_vector[i][j + 1])
block_vector.extend(cell_gradient_vector[i + 1][j])
block_vector.extend(cell_gradient_vector[i + 1][j + 1])
mag = lambda vector: math.sqrt(sum(i ** 2 for i in vector))
magnitude = mag(block_vector)
if magnitude != 0:
normalize = lambda block_vector, magnitude: [element / magnitude for element in block_vector]
block_vector = normalize(block_vector, magnitude)
hog_vector.append(block_vector)
return hog_vector, hog_image

def global_gradient(self):
gradient_values_x = cv2.Sobel(self.img, cv2.CV_64F, 1, 0, ksize=5)
gradient_values_y = cv2.Sobel(self.img, cv2.CV_64F, 0, 1, ksize=5)
gradient_magnitude = cv2.addWeighted(gradient_values_x, 0.5, gradient_values_y, 0.5, 0)
gradient_angle = cv2.phase(gradient_values_x, gradient_values_y, angleInDegrees=True)
return gradient_magnitude, gradient_angle

def cell_gradient(self, cell_magnitude, cell_angle):
orientation_centers = [0] * self.bin_size
for i in range(cell_magnitude.shape[0]):
for j in range(cell_magnitude.shape[1]):
gradient_strength = cell_magnitude[i][j]
gradient_angle = cell_angle[i][j]
min_angle, max_angle, mod = self.get_closest_bins(gradient_angle)
orientation_centers[min_angle] += (gradient_strength * (1 - (mod / self.angle_unit)))
orientation_centers[max_angle] += (gradient_strength * (mod / self.angle_unit))
return orientation_centers

def get_closest_bins(self, gradient_angle):
idx = int(gradient_angle / self.angle_unit)
mod = gradient_angle % self.angle_unit
return idx, (idx + 1) % self.bin_size, mod

def render_gradient(self, image, cell_gradient):
cell_width = self.cell_size / 2
max_mag = np.array(cell_gradient).max()
for x in range(cell_gradient.shape[0]):
for y in range(cell_gradient.shape[1]):
cell_grad = cell_gradient[x][y]
cell_grad /= max_mag
angle = 0
angle_gap = self.angle_unit
for magnitude in cell_grad:
angle_radian = math.radians(angle)
x1 = int(x * self.cell_size + magnitude * cell_width * math.cos(angle_radian))
y1 = int(y * self.cell_size + magnitude * cell_width * math.sin(angle_radian))
x2 = int(x * self.cell_size - magnitude * cell_width * math.cos(angle_radian))
y2 = int(y * self.cell_size - magnitude * cell_width * math.sin(angle_radian))
cv2.line(image, (y1, x1), (y2, x2), int(255 * math.sqrt(magnitude)))
angle += angle_gap
return image

img = cv2.imread('qiao.jpg', cv2.IMREAD_GRAYSCALE)
# v2.IMREAD_COLOR:读取一副彩色图片,图片的透明度会被忽略,默认为该值,实际取值为1;
# cv2.IMREAD_GRAYSCALE:以灰度模式读取一张图片,实际取值为0
# cv2.IMREAD_UNCHANGED:加载一副彩色图像,透明度不会被忽略。
hog = Hog_descriptor(img, cell_size=8, bin_size=9)
vector, image = hog.extract()

# 输出图像的特征向量shape
print(np.array(vector).shape)
plt.imshow(image, cmap=plt.cm.gray)
plt.show()

结果:

原图 特征

 

 

 


打赏支持
“如果你觉得我的文章不错,不妨鼓励我继续写作。”

HOG算法的笔记与python实现
https://dreamoneyou.github.io/2022/HOG算法的笔记与python实现/
作者
九叶草
发布于
2022年11月18日
更新于
2023年4月7日
许可协议