HierarchicalClustering分层集群
本文最后更新于:2023年4月7日 下午
主要分为两大类:agglomerative(自底向上)和 divisive(自顶向下)。首先说前者,自底向上,一开始,每个数据点各自为一个类别,然后每一次迭代选取距离最近的两个类别,把他们合并,直到最后只剩下一个类别为止,至此一棵树构造完成。
有两个问题:
- 如何计算两个点的距离?这个通常是 problem dependent 的,一般情况下可以直接用一些比较通用的距离就可以了,比如欧氏距离等。
- 如何计算两个类别之间的距离?一开始所有的类别都是一个点,计算距离只是计算两个点之间的距离,但是经过后续合并之后,一个类别里就不止一个点了,那距离又要怎样算呢?到这里又有三个变种:
- Single Linkage:又叫做 nearest-neighbor ,就是取两个集合中距离最近的两个点的距离作为这两个集合的距离,容易造成一种叫做 Chaining 的效果,两个 cluster 明明从“大局”上离得比较远,但是由于其中个别的点距离比较近就被合并了,并且这样合并之后 Chaining 效应会进一步扩大,最后会得到比较松散的 cluster 。
- Complete Linkage:这个则完全是 Single Linkage 的反面极端,取两个集合中距离最远的两个点的距离作为两个集合的距离。其效果也是刚好相反的,限制非常大,两个 cluster 即使已经很接近了,但是只要有不配合的点存在,就顽固到底,老死不相合并,也是不太好的办法。
- Group Average:这种方法看起来相对有道理一些,也就是把两个集合中的点两两的距离全部放在一起求一个平均值,相对也能得到合适一点的结果。
总的来说,一般都不太用 Single Linkage 或者 Complete Linkage 这两种过于极端的方法。整个 agglomerative hierarchical clustering 的算法就是这个样子,描述起来还是相当简单的,不过计算起来复杂度还是比较高的,要找出距离最近的两个点,需要一个双重循环,而且 Group Average 计算距离的时候也是一个双重循环。
打赏支持
“如果你觉得我的文章不错,不妨鼓励我继续写作。”
HierarchicalClustering分层集群
https://dreamoneyou.github.io/2018/Hierarchical Clustering分层集群/